
12 JAMES BESSEN

12

2
What Good Is Free Software?

James Bessen

When you use the World Wide Web, it is likely that the
web pages are sent to you by software that was devel-
oped by unpaid volunteers. The majority of web serv-

ers on the public Internet use an open source software program
called Apache.1 This free product was developed by a loosely
organized team of hundreds of programmers and thousands of
other people reporting bugs or requesting enhancements, none
of whom were paid by the Apache group for their efforts.2 Yet
Apache competes successfully with well-funded commercial
products developed by Microsoft, Sun, and other companies.

This seems paradoxical in an age when conventional wisdom
holds that markets driven purely by private interest best serve
collective needs. But I argue here that the paradox has a straight-
forward explanation. Although some developers of open source
software are indeed motivated by altruism, many are members
of communities that benefit from the development of software
along very flexible lines. In particular, firms driven by the con-
ventional profit motive find open source software valuable be-
cause it allows them to meet their specific idiosyncratic
needs—needs not easily met with standardized software prod-
ucts. I argue that for complex software products these unmet
needs constitute a major source of demand, providing a robust
long-term economic foundation for open source software.

02 3393-3 chap2.p65 11/12/2002, 6:54 AM12

WHAT GOOD IS FREE SOFTWARE? 13

In a sense, open source provision is an extension of the mar-
ket, not an alternative. Private agents meet private needs. As I
explain below, instead of providing software in exchange for
money, open source developers provide software in exchange
for a (sometimes informal) promise to improve the product and
return the fruits of their invention to the community.

Government support is thus not necessary to sustain open
source development. However, I argue that the U.S. govern-
ment is nonetheless intervening in this market in a very differ-
ent way, ironically sabotaging the otherwise healthy open source
movement.

Over the last two decades, the courts have radically changed
the legal protection of the ideas embodied in software, making it
much easier to obtain patents, even for rather obvious ideas.
The courts made these changes despite a high level of innova-
tion in the software industry and without any evidence that these
patents would improve (or had improved) the pace of innova-
tion. In response, large firms have acquired thousands of pat-
ents in order to strategically block competitors. The resulting
“patent thickets” threaten the ability of open source developers
to improve software and may thus undermine this important
source of innovation in the future.

This chapter offers two contributions. First, it presents an
economic rationale for the participation of for-profit enterprises
in open source development of complex products.3 Much of the
previous economics research on open source has focused on the
participation of individual users who are also programmers (user-
developers) with simple needs. For example, Josh Lerner and
Jean Tirole attribute much individual motivation to reputation
building, while Justin Johnson and Jennifer Kuan model indi-
vidual user-developers with common needs but heterogeneous
valuations and abilities.4 Second, this chapter presents the argu-
ment that changes in patent regulation, in particular those en-
couraging the growth of patent thickets, threaten the development
of open source software.

The discussion begins with a description of open source soft-
ware and free software, followed by a comparison of these forms

02 3393-3 chap2.p65 11/12/2002, 6:54 AM13

14 JAMES BESSEN

to proprietary provision of software. In subsequent sections, I
argue that open source does not generally require government
financial support, and I briefly consider government procure-
ment policies with this reality in mind. The chapter concludes
with an analysis of the effects of patents on open source, with
recommendations for changes in patent policy.

Free and Open Source Software

Since the early days of computing, users have shared computer
code. Many important early programs, including many devel-
oped with government funding, were freely passed around. In
the 1950s and 1960s, proprietary software consisted of limited
applications that were almost entirely sold bundled with com-
puter hardware. Little packaged software was sold until the 1970s,
when IBM was challenged by private and government lawsuits
to unbundle and when minicomputers came into wide use.5

In the mid-1980s a new, more formalized model for sharing
software code emerged. The computer scientist Richard Stallman,
concerned about limits on his ability to access, modify, and im-
prove software, started the free software movement.6 He devel-
oped the GNU General Public License (GPL) for software
programs. Under the GPL the user obtains free access to the
software code and agrees that any redistribution of the code will
also be freely available, including any modifications the user
makes to the code.

Free software gained momentum during the mid-1990s, with
the emergence of the Internet. Developers such as Linus Torvalds,
the initial creator of Linux, pioneered new organizational schemes
that made it possible for hundreds of volunteer programmers to
participate in joint software development over the Internet. Out
of this broad participation arose the open source movement,
which includes software developed under the GPL as well as
other license agreements.

It is helpful to define some terms. First, note that there are
two senses in which free software is free: it has zero direct cost

02 3393-3 chap2.p65 11/12/2002, 6:54 AM14

WHAT GOOD IS FREE SOFTWARE? 15

to the user, and it provides the freedom to modify the software.
Stallman emphasizes the latter usage. Free software, he explains,
is “free as in ‘free speech,’ not as in ‘free beer.’”7 This distinc-
tion is important for two reasons. First, free software is not at
all the same as “freeware,” which is zero-price software with
closed source code that is often provided as a trial product.
Second, it is highly misleading to view the main economic at-
tribute of free software as its price. As is well known, the total
cost of installing a software program includes many other costs;
even with proprietary software, the price of the software is usu-
ally only a modest portion of the total user cost.8 Also, as I
explain below, large economic benefits arise from the freedom
to modify the source code.

Open source software includes free software subject to the
GPL, but it also includes other license agreements that permit
access to the source code. Some of these license agreements per-
mit the user to incorporate free code into proprietary, closed
source products. For example, versions of open source Unix have
been incorporated into closed source operating systems under
non-GPL licenses.

Note, however, that for many products, public code is rarely
included in proprietary products even when the license allows
this. That is particularly true for dynamically improving prod-
ucts, in contrast to mature products such as standard Unix. First,
open source developers are not motivated to improve software if
they suspect it will be converted to a proprietary product. Sec-
ond, and perhaps more important, creating proprietary software
from open source code is often difficult because open source
software typically changes rapidly. One of the key aspects of open
source products such as Apache is that large numbers of modifi-
cations, improvements, and bug fixes are made and rapidly in-
corporated into new releases. Any private modifications would
have to be continually re-integrated into new releases at signifi-
cant cost. So although someone could legally use the Apache
code to produce a customized closed source product, this has
not been done. Firms offering proprietary web servers develop
their own code from scratch.

02 3393-3 chap2.p65 11/12/2002, 6:54 AM15

16 JAMES BESSEN

Here I use the term “open source” to include free software
distributed under the GPL as well as software distributed under
other licenses.

To understand the nature of open source software, it is neces-
sary to dispel some misunderstandings. Reading the business
press, one might conclude that open source software is a mar-
ginal, transitory activity that lacks the solid economic rationale
of proprietary software. Open source software is portrayed as
the province of young idealists, graduate students, and teenage
hackers rather than the serious business of corporate manage-
ment information systems (MIS) departments with mission-criti-
cal computer systems to keep online. Others suggest open source
is something of a fad.9 Perhaps most important, open source
programmers are presumed to be motivated by altruism rather
than by traditional profit motives—as the Economist tells us, “for
love, not money.”10

This last point, in particular, reinforces the occupational preju-
dices of economists. They tend to think in terms of standardized
commodities because they have had considerable success explain-
ing markets for standardized proprietary commodities. They
naturally view Microsoft Office as the ideal sort of software, while
Microsoft is frequently viewed as the prototypical software en-
terprise. Furthermore, they have a lot of experience suggesting
that traditional proprietary incentives are highly efficient means
of providing standardized commodities.

Consequently, economists, if not outright skeptical about open
source, tend to view it as a puzzle to be explained. Clearly, it is
possible for a bunch of idealistic programmers to write a lot of
code, but staying power requires more than just altruism.

The pundits said many of the same things about the PC and
PC software twenty years ago. PC software was written by young
idealists who supposedly weren’t up to the task of writing seri-
ous corporate software. After all, a college dropout (Gates at
Microsoft) and a Transcendental Meditation instructor (Kapor
at Lotus) ran the leading PC software companies. But, of course,
new software is usually written by people who do not have a
large vested interest in old software.

02 3393-3 chap2.p65 11/12/2002, 6:54 AM16

WHAT GOOD IS FREE SOFTWARE? 17

In reality, open source software has become serious business.
IBM is investing a billion dollars in open source projects, and
many other large companies are joining in, too. By the same
token, some open source products have achieved a high degree
of success, such as the Apache web server, which holds a 64
percent share of active, publicly accessible web servers.11 A study
at the University of Wisconsin found open source UNIX operat-
ing systems were more reliable than more mature commercial
products, and a study at Berkeley found superior debugging
among open source software projects.12 In addition, industry
surveys have found a higher degree of customer satisfaction
among open source users.13 Note, too, that open source program-
mers are not primarily teenage hackers—a recent survey found
that the average active participant had ten years of programming
experience.14

It is true that most open source products are directed at techni-
cally sophisticated users, and many are not very “user friendly.”
Some people argue that this is no accident: open source coders are
unlikely to develop programs for less sophisticated users.15 How-
ever, the current technical bias may just be a result of the newness
of the software. Early PC and minicomputer software was hardly
user-friendly—Microsoft took over a decade to deliver products
easily grasped by the untutored. And there are important signs of
ongoing progress. Graphical user interfaces (from KDE and
Gnome) for the GNU/Linux operating system are now widely
used.16 And according to some reviewers, the recently released
open source Mozilla web browser can meet or beat Microsoft’s
Internet Explorer for usability.17 Thus it is simply too soon to tell
whether open source is in any fundamental way limited in its
ability to address the needs of less technical users.18

Not only has open source software achieved some important
successes, it also appears to be gaining momentum and improv-
ing rapidly. The number of developers registered at SourceForge,
a popular website for open source participants, continues to grow
rapidly and now exceeds 400,000.19 The software they produce
has grown in sophistication and features. For example, the Apache
program was initially used for small, individual web servers. Large

02 3393-3 chap2.p65 11/12/2002, 6:54 AM17

18 JAMES BESSEN

websites that handled tens of thousands of users at once needed
industrial strength “application servers,” such as Weblogic from
BEA. Now, however, open source products such as Tomcat and
Jboss are moving into that territory.20

Finally, it is simply not true that most open source developers
are solely motivated by altruism. A recent survey by the Boston
Consulting Group found a wide variety of motives.21 Some de-
velopers get involved with open source projects to learn cutting
edge technology. For this reason, open source programs are now
widely used in university computer science courses. Others seek
a sense of community in participating in open source projects.
Yet others hope to build their reputation through involvement
that advances their careers.22 Finally, in many cases, participa-
tion in open source development permits individuals and firms
to obtain software that is customized to their particular needs.

All of these motives are important. I will focus on the last
one—the ability to customize software for in-house needs—
because I see this incentive as a critical reason why firms (and
not just individual programmers) want to participate in open
source development and why a growing share of software is likely
to be developed with open source code. Indeed, as I elaborate
below, the need for customized software may drive firms to open
source development to improve the bottom line. Thus it is a
false dichotomy to pose open source and proprietary develop-
ment as a contrast between altruism and private incentives.

Software and Markets

A large economics literature convincingly argues that markets
are efficient mechanisms for meeting many private needs. Mar-
kets can provide the strongest incentives for private agents to
undertake the investments necessary to make the commodities
that best meet the demand. For example, consider standardized
commodities in large markets. It may be too expensive for each
consumer to produce the commodity for his or her own needs.

02 3393-3 chap2.p65 11/12/2002, 6:54 AM18

WHAT GOOD IS FREE SOFTWARE? 19

The market serves to aggregate demand for a standardized prod-
uct from many different consumers. Then a firm can make prof-
its that are sufficient to cover production and development costs.

But most software is not a standardized commodity. Although
Microsoft is often viewed as the prototypical software firm, most
software is not packaged software. Indeed, as figure 2-1 illus-
trates, packaged software has never accounted for more than a
third of software investment. The majority of software produced
is either self-developed or custom. This is quite different from
typical commodities, and for this reason, arguments grounded

Figure 2-1. Packaged Software Share of Investment,
1962–98

Source: Data from Robert Parker and Bruce Grimm, “Recognition of Business and
Government Expenditures for Software as Investment: Methodology and Quantitative
Impacts, 1959–98,” report presented at the meeting of the Bureau of Economic Analysis,
May 5, 2000 (www.bea.doc.gov/bea/papers/software.pdf [August 2002]).

1966 1970 1978 1982 1990 1994

80

60

40

20

Percent

1974 1986

02 3393-3 chap2.p65 11/12/2002, 6:54 AM19

20 JAMES BESSEN

in analysis of typical commodities need to be examined care-
fully. The ability to tailor programs to meet specific needs is an
essential characteristic of software. This is what is “soft” in soft-
ware, and this is why software-hardware systems are economi-
cally advantageous in so many applications.

The customizability of this good affects the nature of the
product and the nature of the market. Standardized software
packages are, at best, a compromise. Attempting to meet as large
a set of individual consumer’s needs as possible, standardized
packages cram in as many features as is feasible. This is why
successful products so often suffer from feature “bloat.”23 Stan-
dardized packages also frequently have “macro extensions”—
tools included in word processor, spreadsheet, or other
applications that allow consumers to customize the packages
to a limited degree with a programming language. But the cost
of debugging ultimately limits the ability of standardized prod-
ucts to meet highly disparate needs. As products accumulate
features, their code becomes much more complex, and debug-
ging costs grow exponentially.24 Thus developers of standard-
ized products face a trade-off between feature richness and
product quality and reliability.25 Restricting features limits the
ability of standardized products to meet the needs of software
consumers. Hence, packaged software represents only a mi-
nority of software investment.

Custom software and contract programming provide an alter-
native proprietary means for meeting the needs of individual
consumers. But customization will not, in general, meet the needs
of all consumers for two well-understood reasons. First, as any-
one who has negotiated a custom programming contract knows,
it is very difficult to specify the contract. This is because the
only complete specification of all the software features and its
behavior under all circumstances is the software code itself.

In effect, consumers cannot specify what they want the soft-
ware to do in all circumstances until they actually have the soft-
ware in hand. Any software contract is thus what economists
call an incomplete contract. When contracts are incomplete, many
consumers will not have their needs met by proprietary provid-

02 3393-3 chap2.p65 11/12/2002, 6:54 AM20

WHAT GOOD IS FREE SOFTWARE? 21

ers. Second, negotiations over custom contracts also suffer from
asymmetric information.26 That is, the developer does not know
how much value the consumer places on the product and there-
fore does not know what to charge. With standardized commodi-
ties, market demand is revealed through many transactions. But
with a custom product, developers cannot obtain this informa-
tion without a costly bilateral bargaining process. As a result, a
developer may not offer a custom contract, even though a con-
tract on terms that are profitable would be accepted. Alterna-
tively, the developer may overreach and ask for too much, leading
the consumer to reject the offer.

Incomplete contracts and asymmetric information result in
some degree of market failure.27 That is, some consumers are
not served even though their needs could be met with profitable
contracts. Note, however, that such market imperfections can-
not be corrected by direct government intervention—the gov-
ernment is in no better position to design or negotiate contracts
than private software developers.

But open source development may finesse these problems by
allowing consumers to customize products themselves. Open
source means, roughly, that consumers are provided with 99
percent of their desired product in a form that allows some of
them to tailor the remaining 1 percent to their own needs. When
the consumer is the developer, problems of specification or valu-
ation are easily resolved.

The open source developer makes the desired enhancements
or fixes and then, under the most common licenses, submits
them back to the open source project. They are then incorpo-
rated into future releases and improve the value of the product
for other consumers who may have similar needs. This works
for enhancements to product features, for entirely new features,
and for bug fixes. Because so many active user-developers be-
come involved, the quality, reliability, and overall value of the
product can grow quite rapidly.

Moreover, many consumers of software who aren’t develop-
ers have the same needs as some of the user-developers.28 In
these cases, the feature-rich products and the large variety of

02 3393-3 chap2.p65 11/12/2002, 6:54 AM21

22 JAMES BESSEN

customized add-on modules produced by open source user-
developers benefit many nondevelopers as well.

The Apache web server illustrates the importance of customi-
zation and feature enhancement for open source users. In one
survey regarding security features, 19 percent of the firms using
Apache had modified the code to these ends, and another 33
percent customized the product by incorporating add-on secu-
rity modules available from third parties.29 Open source code
facilitates the provision of add-on modules, and over 300 of these
have been developed for Apache.30 Many are quite popular: six-
teen add-ons have at least 1 percent market share, and one (PHP)
has 45 percent market share.31 Moreover, many private enhance-
ments are shared with the community and incorporated in new
versions of the product. During the first three years of Apache,
388 developers contributed 6,092 enhancements and fixed 695
bugs.32 This far exceeds the rate of feature enhancement for com-
parable commercial products.33

The breadth and dynamism of this participation demonstrate
the degree to which open source software extends the market.
Apache is used primarily by firms, not by individuals. So firms
choose to customize their software and then choose to contribute
these modifications back to the Apache group or to make them
available as add-ons. Although personal motivations such as al-
truism, learning, community participation, and reputation all con-
tribute to open source development, firms obtain the direct benefit
of software tailored to their own needs. The many firms that cus-
tomize Apache represent consumers whose needs are largely not
met by proprietary products.34 In addition, open source meets the
needs of firms that cannot develop their own software but that
have the same needs as some of the customizing firms. And it
also serves those consumers who cannot afford to license pro-
prietary products. Open source thus provides a means to extend
the market. Although it does not involve the exchange of goods
for a positive price, it is an exchange of a software product for a
(sometimes informal) promise to return possible enhancements
to the community. That promise comes true frequently enough
to sustain participation in open source development.

02 3393-3 chap2.p65 11/12/2002, 6:54 AM22

WHAT GOOD IS FREE SOFTWARE? 23

Of course, proprietary software companies can achieve some
degree of customization by permitting third parties to make add-
on products. But the third-party community for open source can
be much more robust than that for proprietary products. For
example, in contrast to Apache’s 300 add-ons, the third-party
listing for Microsoft’s comparable web server product, IIS, con-
tains the names of just 11 partner companies.35

There are two reasons for this difference. First, open source
third-party development is just a counterpart to the open source
process of code development; third-party add-ons are just those
enhancements that the developer or Apache Group chose not to
include in the standard Apache product release. But the devel-
opers of these add-ons have the advantage of full access to the
source code, documentation, associated tools, and the advice
(through email newsgroups) of the development community.
This makes third-party development highly dynamic. Microsoft
tries to encourage third-party development, and it recently an-
nounced a “shared source” initiative that permits select third-
party developers to see, but not to modify, Microsoft source code.
Nevertheless, it appears difficult for Microsoft or other propri-
etary developers to duplicate the kind of dynamic community
supporting some open source products.

Second, proprietary software companies deliberately limit the
role of third-party developers, choosing to develop some erstwhile
add-ons themselves and preventing some from being developed
at all. Third-party developers depend on application program in-
terfaces (APIs) to integrate add-on products. Proprietary develop-
ers only make limited APIs available, and these change over time.
For example, companies such as Netscape and RealNetworks ex-
perienced difficulty with their Microsoft add-ons as Microsoft
changed APIs. Indeed, opening the APIs to third-party companies
has been an issue in the Microsoft antitrust suit.

On the other hand, open source development is sometimes
limited for another reason. The success of open source projects
depends on a sufficient accumulation of code to make it worth-
while for developers to begin the customization-modification-
improvement cycle. To some degree, open source projects face a

02 3393-3 chap2.p65 11/12/2002, 6:54 AM23

24 JAMES BESSEN

chicken-and-egg problem. Until the project reaches a critical
mass, it may be unattractive to many developers; developers may
choose to wait for others to serve as pioneers. This is a version
of what economists call the “free rider” problem.36 Thus some
open source projects fail to get off the ground where proprietary
products can succeed.37 However, once open source products do
reach critical mass, they may very well prove superior to propri-
etary products at providing customer solutions.38 And, fortu-
nately, many of the alternative motives for programmers propel
them forward.

In a way, standardized products and open source products are
mirror images. Standardized products succeed by finding a com-
mon denominator of features that meet a portion of the needs of
a large number of consumers. The market serves to aggregate
demand, but the products do not satisfy consumers’ specialized
needs. On the other hand, open source aggregates supply: many
different consumer-developers contribute modifications, en-
hancements, and fixes to meet a wide variety of different needs.
However, to do so, open source projects need to begin with a
common denominator of code that meets basic needs.

In summary, open source software meets a set of private eco-
nomic needs that are not well served by proprietary software.
The Economist’s false dichotomy posing “love” against “money ”
misses the reality. A profit-driven firm that is unable to purchase
packaged software that meets its critical business needs may well
find open source a rational and highly effective solution. For
this reason, I believe that open source software will continue to
thrive and become progressively more a part of the mainstream.

Open Source Software and Government Subsidy

Open source software allows consumers to meet needs that are
not met by proprietary software. In a narrow technical sense,
then, the widespread use of open source suggests opportunities
created by market failure—that is, some socially beneficial trans-
actions do not occur in traditionally organized markets. But this
does not imply that government intervention is appropriate to

02 3393-3 chap2.p65 11/12/2002, 6:54 AM24

WHAT GOOD IS FREE SOFTWARE? 25

correct these failures. In fact, open source software is itself a
private means of remedying some of these market imperfections.

In a broader sense, open source can be viewed as an extension
of the market, a voluntary exchange between private parties. As
such, direct government involvement is not needed absent
evidence of other market failure. Open source has clearly flour-
ished so far with little government support, and as the afore-
mentioned SourceForge statistics suggest, open source is
continuing to grow without much government support.39

One area in which government has a direct financial impact
on both open source and proprietary software is in procurement.
Various governments around the world appear to be tilting one
way or the other. China recently rejected proprietary solutions
in favor of open source products for a variety of projects.40 In
part, the Chinese seem motivated by a wish to cultivate a domes-
tic software industry. Last year France announced support of
open standards and recommended that government agencies use
open source products, rationalizing the initiative as part of a
plan to encourage the growth of small and medium-size soft-
ware companies.41 On the other hand, many existing procure-
ment policies work against open source. For example, defense
procurement in the United States requires security certification
from the National Security Agency (NSA). Yet recent changes in
the NSA certification process require the software vendor to pay
the costs at commercial testing labs.42 This effectively excludes
much open source software. In addition, there appear to be some
efforts to discourage or even to ban open source products from
some defense procurement.43

Governments are clearly formulating different policies with
different effects. The considerations are necessarily complex.
However, I can suggest some simple guidelines. First, it makes
no sense to have procurement policies that discourage consider-
ation of open source products.44 Second, most of the costs and
benefits of any software purchase arise from the direct costs and
benefits of the specific application. For this reason, products should
largely be considered on their merits for the project at hand. Note,
however, that when future modifications are important, open

02 3393-3 chap2.p65 11/12/2002, 6:54 AM25

26 JAMES BESSEN

source may provide added flexibility, and thus future costs and
benefits should be factored into the calculation. Also, whether
the software is open source or not, systems should support free,
open standards, so that future users need not be “locked in” to a
particular product in order to access the data.45

Finally, it is true that there might be significant positive exter-
nalities associated with open source—that is, benefits that ac-
crue to parties other than the decisionmakers. The Chinese and
French governments appear to take this into account, viewing
open source as part of a national “industrial policy” to promote
competitiveness in the software industry.

But as earlier debates over industrial policy suggest, it is often
very difficult to measure the potential benefits.46 Indeed, it is
hard to see what government procurement provides small soft-
ware firms that they do not obtain from their own use of open
source software. And while government support might help new
open source projects get off the ground, many proposed projects
are not socially beneficial, and government possesses no better
knowledge than private parties about which proposed projects
address unmet private needs.47 Perhaps positive externalities can
be demonstrated in certain cases. Nevertheless, the evidence to
date does not warrant a blanket preference for one form of soft-
ware provision over another.

Patent Thickets and the Future of Open Source Software

In another area, however, government policy may have a deeply
chilling effect on open source development. Intellectual prop-
erty rights regulate the exchange of software for both propri-
etary and open source products. Dramatic changes in patent
regulation, largely initiated by the courts with little industry or
legislative input, pose a significant threat to the future health of
software and to open source software in particular.

Prior to the mid-1980s, trade secrecy law and licensing con-
tracts protected techniques used in developing software. Copy-
right law protected against piracy. With these protections, the
software industry was highly innovative, and in fact, most of
today’s leading software companies grew up in this environment

02 3393-3 chap2.p65 11/12/2002, 6:54 AM26

WHAT GOOD IS FREE SOFTWARE? 27

lacking patent protection. The only apparent shortcoming of the
system was its failure to provide employment for intellectual
property attorneys.

That problem was fixed during the 1980s, when the courts
engaged in a bold social experiment, extending patent protection
to software. At the same time, they made other changes that re-
sulted in a lower standard for nonobviousness and a greater pre-
sumption that any patent granted by the patent office was valid.48

The result was a dramatic patent “land grab” (see figure 2-2).
The number of software patents soared to almost 20,000 per
year, and a total of nearly 100,000 have accumulated to date.
The largest share of these patents was obtained not by software
companies, but by hardware companies building large portfo-
lios—so-called patent thickets. Many leading software compa-
nies expressed the view that patents were undesirable, although

Figure 2-2. Software Patents Granted, 1975–99

Source: Gregory Aharonian, PATNEWS, Internet Patent News Service (www.bustpatents.
com [August 2002]).

1978 1981 1987 1990 1996

15,000

10,000

5,000

1984 1993

Number of patents

02 3393-3 chap2.p65 11/12/2002, 6:54 AM27

28 JAMES BESSEN

many of these same companies have since been forced to acquire
patent portfolios for defensive purposes.49 Predictably, the num-
ber of patent lawsuits has also begun to soar.50

Open source developers simply cannot afford to play the stra-
tegic games in which firms with large portfolios of patents rou-
tinely engage. In a survey conducted by researchers at Carnegie
Mellon University, 82 percent of the respondents said they pat-
ented product innovations to block competitors.51 In other words,
an important use of patents is to prevent innovation by competi-
tors. Also, 59 percent said they obtained patents to prevent law-
suits, and 47 percent obtained them as aids to negotiations. That
is, firms use patents, especially portfolios of patents, as bargain-
ing chips. Many of these patents are never used commercially.52

This behavior arises when technologies are complex, cumula-
tive, and overlapping so that any single product may potentially
infringe hundreds or thousands of patents. That’s why semicon-
ductor firms regularly engage in strategic cross-licensing of whole
portfolios of patents.53

Software is very similar to semiconductors in that any single
product contains hundreds or thousands of “inventions.” Be-
cause large firms can acquire thousands of patents—a task made
much easier thanks to the lowering of standards (see below)—
they are beginning to play the same strategic games, and soft-
ware cross-licensing agreements are the result.

Open source developers are well aware that they cannot easily
play these games.54 Individual developers do not have the re-
sources to acquire sizeable patent portfolios. The process of ne-
gotiating and litigating portfolios is even more expensive. As
Bill Gates wrote in a memo, “A future start-up with no patents of
its own will be forced to pay whatever price the giants choose to
impose. That price might be high: Established companies have
an interest in excluding future competitors.”55

Firms that use or promote open source have resources, and
many also have large patent portfolios. Some, such as IBM, license
their patents royalty-free to open source developers.56 Other de-
velopers talk of responding to the emerging threat by building
common defensive patent pools.57 But to date, no significant patent

02 3393-3 chap2.p65 11/12/2002, 6:54 AM28

WHAT GOOD IS FREE SOFTWARE? 29

pool or other organization has emerged that can protect open source
products from such strategic competition, and the coordination
and transaction costs of building such a solution seem quite high.

To date, only a few open source developers have been directly
embroiled in patent infringement controversies.58 Similarly, liti-
gation activity and cross-licensing among proprietary software
developers has only recently become a significant phenomenon.
So far, patents have not had a major negative effect on software
innovation in general or on open source development in par-
ticular. Nevertheless, open source developers are right to be
deeply concerned about the possible emergence of patent thick-
ets. Large firms competing with open source developers have
little reason not to use patents as a strategic weapon. And a fea-
sible defense strategy for open source developers seems prob-
lematic at best.

This problem largely arises because so many patents are granted
for trivial inventions that are simply not significant advances over
existing knowledge. Low standards allow firms to acquire large
patent portfolios with expenditure of money but without com-
mensurate innovation. For an example of a trivial invention, see
the patent abstract shown in figure 2-3. This is a patent for a method

Figure 2-3. Example of a Trivial Patent

Source: U.S. Patent and Trademark Office (www.uspto.gov/main/patents.htm [August
2002]).

United States Patent 5,851,117
Alsheimer, et al. December 22, 1998

Building block training systems and training methods

Abstract
A building block training system and method of training of cleaners of
facilities to be used on the job which utilizes a plurality of pictorial displays
showing a specific set of steps to accomplish a cleaning operation in an
efficient safe manner, e.g., dusting or vacuuming of a facility as well as a
plurality of pictorial displays as to what must not be missed and must be
avoided in performing the cleaning operation.

02 3393-3 chap2.p65 11/12/2002, 6:54 AM29

30 JAMES BESSEN

of training janitors using illustrated manuals. Apparently, because
the manuals have pictures, the patent examiners consider this a
nonobvious “invention.” They must not have read Highlights
Magazine for Children in their youth. If they had, they would have
found prior art in the “Goofus and Gallant” feature, which shows
cartoons of the right and wrong way to do things. Another ex-
ample is a recent patent for a method of swinging sideways on a
backyard swing (No. 6,368,227).59

Now in fairness, these are unusually bad patents. But they
illustrate the nature of the problem. First, the U.S. Patent and
Trademark Office (USPTO) rarely corrects its mistakes. Even
though both of these patents have been widely publicized, the
patent office has only recently decided to take another look at
one of them (the swing patent). Second, if the nonobviousness
standard is low enough for backyard swings and illustrated text-
books, it is no obstacle at all for more technically obscure patent
applications. Third, even though these patents might very well
be found invalid if tested in court, litigation is very expensive.
When large firms build portfolios of thousands of patents, it
hardly matters whether many of them would survive a court
challenge. The small developer cannot afford to find out.

The patent office, in fact, has little incentive to turn down
patents since it runs on fees from successful applications. Not
surprisingly, the USPTO declares that its quality goal is to “sat-
isfy their customers”; their customers are not, however, society
at large.60 Not surprisingly, very few patents are rejected; if con-
tinuations (reapplications) are included, some 95 percent of ap-
plications are eventually approved, and few are ever subsequently
reexamined.61

Some people claim that this problem could be solved if the
USPTO had more money. Others suggest that patent quality will
improve once the patent office develops better skills in new tech-
nology areas.62 In fact, the USPTO just follows the standards set
by the courts in this matter—for it is the courts that dramati-
cally lowered standards. According to the 1952 statute, a patent
should not be obvious to “a person having ordinary skill in the

02 3393-3 chap2.p65 11/12/2002, 6:54 AM30

WHAT GOOD IS FREE SOFTWARE? 31

art.” But since 1982, when a specialized court (the Court of
Appeals for the Federal Circuit) was created to hear all patent
appeals, this requirement has been dramatically eased.63

Court doctrine now pays great attention to “secondary issues,”
making it much harder to find a patent invalid because it is ob-
vious. Prior to 1982, in court cases challenging the validity of
patents, about 45 percent of the patents were found invalid for
obviousness.64 By the mid-1990s, only 5 percent were found in-
valid for obviousness. In effect, the federal circuit court has set a
policy that permits large numbers of trivial patents in software
and in many other fields as well. This policy threatens the future
of open source.

Moreover, these government policies cannot be justified as
necessary for the promotion of innovation in software. It is
often argued that patents are necessary to promote innovation.
In the words of the USPTO, “Through the issuance of patents,
we encourage technological advancement by providing incen-
tives to invent, invest in, and disclose new technology world-
wide.”65 But in software, there is no evidence that patents have
increased incentives to invest in research and development. The
software industry was highly innovative before patents. Fur-
thermore, Eric Maskin (Institute for Advanced Study at
Princeton) and I found that the firms obtaining the large port-
folios of software patents actually decreased their research and
development spending relative to sales.66 At best, software pat-
ents have thus far had a neutral effect on software innovation;
at worst, they have had a significant negative impact on future
innovation. And there is simply no evidence that patents are
needed to promote innovation in software.

Indeed, large portfolios of trivial patents probably deter inno-
vation even among proprietary developers. In the semiconduc-
tor industry, where large firms use patent thickets strategically,
small firms end up paying a “patent tax” on innovation to the
large firms. Not only must small firms pay royalties (IBM col-
lects over $1 billion in royalties each year and Texas Instru-
ments collected royalties over half a billion dollars per year by

02 3393-3 chap2.p65 11/12/2002, 6:54 AM31

32 JAMES BESSEN

the mid-1990s), but the large portfolio holders gain access to the
innovator’s technology (so-called design freedom).67 While the
negative effect of these burdens has yet to be verified empiri-
cally, there seems little doubt that they reduce incentives for
emerging firms to innovate. But although small proprietary firms
may be taxed, open source developers potentially face extinc-
tion because they cannot even afford small patent portfolios and
the costs of negotiating or litigating over them.

The prospects for open source and for software innovation
generally would be much stronger if the radical policy changes
imposed by the courts were reversed. Two sorts of changes would
be helpful. First, Congress could restore the subject matter limi-
tations on patents that largely prevented patents on both soft-
ware and business methods before the creation of the Court of
Appeals for the Federal Circuit. However, since the current crop
of patents will last up to twenty years, this may not generate the
desired benefits for some time.

A second change would reduce the strategic effectiveness of
patent thickets by making their acquisition and maintenance
more expensive. For example, rigorous standards for
nonobviousness could be reimposed, and the doctrine of equiva-
lents could be strictly limited. Also, a “polluter pays” principle
could be applied to legal cases where infringement litigation is
brought on patents that are found to be obvious (according to a
stricter standard than at present).68 Another way to clear patent
thickets is to reduce their value. Penalties for infringement could
be reduced, the litigation process could be simplified to reduce
costs (for example, by eliminating the use of preliminary in-
junctions in infringement cases), and the term for software pat-
ents could be shortened.69 Other considerations might level the
playing field, allowing open source developers and individuals
to obtain and maintain patents at little cost.70

These changes may be difficult, since many of them are likely
to be opposed by the influential patent bar. However, the health
and growth of one of the nation’s most dynamic and technologi-
cally important industries is at stake.

02 3393-3 chap2.p65 11/12/2002, 6:54 AM32

WHAT GOOD IS FREE SOFTWARE? 33

Conclusion

Open source is an important organizational innovation in the
development of software, one that improves the ability of pri-
vate agents to meet private needs. It corrects imperfections in
the market for proprietary software, and it does so without re-
quiring government intervention through subsidies or pro-
curement preferences. Procurement policies should permit gov-
ernment agencies to purchase open source software on the basis
of its merits. In short, open source is a private solution that
can and should be allowed to flourish without government
intervention.

Unfortunately, the government is already heavily involved:
relatively recent changes in the patent system threaten to dis-
rupt open source software development. Over the last two de-
cades, the courts have begun to supplant copyright protection,
on which the viability of open source depends, with patent pro-
tection. The accumulation of large portfolios of software patents
by a few large firms threatens to undermine this important so-
cial development. The actions of the courts need to be reversed
to encourage the growth of open source development and the
health of software innovation in general. Unchecked, software
developers will lose much of their freedom to modify and en-
hance open source code, and with that, society will lose an im-
portant source of innovation.

02 3393-3 chap2.p65 11/12/2002, 6:54 AM33

net benefits, I believe it is probably not worth doing––in part, because the gov-
ernment or policymaker can probably do other things that have a higher payoff.

12. See the section “Software and Public Goods” in chapter 4.
13. Certainly private companies, especially larger ones with multiple offices,

are concerned with standardization. Sharing documents and working jointly is
much more difficult in an environment without standard software. Private firms
could equally value “openness.” For example, a firm might find that customiz-
ing open source software, say Linux, provides a certain degree of standardization
but also allows internal departments to shape the software to their own needs.

14. If government-funded software is licensed under the GPL, all other pro-
grams that incorporate or extend that software must be licensed under GPL. As
a result, the government-funded project could not form the basis for a commer-
cial product––it must remain GPL instead. If the government funded propri-
etary research, it would remain secret (with source code not shared) and therefore
would not be available for others to use. However, the owner of the code would
have profit incentives to make the code valuable to users, which might lead to
licensing of the code to others. If the government-funded software is licensed
under a less restrictive open source license, like BSD, then it can be incorpo-
rated into commercial products as well as used in other open source projects. A
policy requiring BSD-style licensing for government-funded software research
could therefore support both the proprietary and the commercial software sec-
tors of the market.

Chapter 2
What Good Is Free Software?

1. See the Netcraft Web Server Survey, “Market Share for Top Servers across
All Domains, August 1995–July 2002” (www.netcraft.com/survey/ [August
2002]). “Open source” software refers to software in which the source code that
programmers use to create the software is freely accessible. This means that the
product is freely available to all users and that any programmer can modify,
debug, and enhance the product.

2. Audris Mockus, Roy T. Fielding, and James Herbsleb, “A Case Study of
Open Source Software Development: The Apache Server,” paper prepared for
the 22d International Conference on Software Engineering, Limerick, Ireland
(http://opensource.mit.edu/papers/mockusapache.pdf [August 2002]).

3. This model is developed more formally in James Bessen, “Open Source
Software: Free Provision of Complex Public Goods,” ROI Working Paper, July
2002 (www.researchoninnovation.org/opensrc/pdf [August 2002]). This formal
analysis is quite similar to the explanation provided by Nikolaus Franke and
Eric von Hippel, “Satisfying Heterogeneous User Needs via Innovation Toolkits:
The Case of Apache Security Software,” Working Paper 4341-02, Sloan School

NOTES TO PAGES 8–13 89

06 3393-3 notes.p65 12/2/2002, 12:18 PM89

90 NOTES TO PAGES 13–17

of Management, Massachusetts Institute of Technology, January 2002 (http://
opensource.mit.edu/papers/frankevonhippel.pdf [August 2002]).

4. Josh Lerner and Jean Tirole, “The Simple Economics of Open Source,”
Working Paper 7600 (Cambridge, Mass.: National Bureau of Economic Research,
March 2000); Justin Pappas Johnson, “Economics of Open Source Software,”
unpublished working paper, May 17, 2001; Jennifer Kuan, “Open Source Soft-
ware as Consumer Integration into Production,” unpublished working paper,
October 26, 2000. In addition, researchers from a variety of other disciplines
have studied open source software. A collection of working papers, including
these, is available at http://opensource.mit.edu/papers [August 2002].

5. Robert Parker and Bruce Grimm, Recognition of Business and Government
Expenditures for Software as Investment: Methodology and Quantitative Impacts,
1959–98, report presented at the meeting of the Bureau of Economic Analysis,
May 5, 2000 (www.bea.doc.gov/bea/papers/software.pdf [August 2002]).

6. For a general history, see Glyn Moody, Rebel Code: The Inside Story of Linux
and the Open Source Revolution (Cambridge, Mass.: Perseus Publishing, 2001).

7. Richard Stallman, “The Free Software Definition” (www.fsf.org/philoso-
phy/free-sw.html [August 2002]).

8. For a review, see Erik Brynjolfsson and Lorin M. Hitt, “Beyond Compu-
tation: Information Technology, Organizational Transformation and Business
Performance,” Journal of Economic Perspectives, vol. 14, no. 4 (2000), pp. 23–48.

9. See, for example, David S. Evans, “Is Free Software the Wave of the
Future?” Milken Institute Review, 4th quarter (2001), p. 41. His current views,
however, appear to have changed.

10. “Out in the Open,” Economist, April 14, 2001, special section, p. 8.
11. Netcraft Web Server Survey, “Market Share.” See also David A. Wheeler,

“Why Open Source Software/Free Software (OSS/FS)? Look at the Numbers!”
2002 (www.dwheeler.com/oss_fs_why.html [August 2002]).

12. Barton P. Miller and others, “Fuzz Revisited: A Re-examination of the
Reliability of UNIX Utilities and Services,” working paper, University of Wis-
consin, 1995 (ftp://grilled.cs.wisc.edu/technical_papers/fuzz-revisited.pdf); Kuan,
“Open Source.”

13. “The Revenge of the Hackers,” Economist, July 9, 1998, p. 63.
14. Karim R. Lakhani, Bob Wolf, and Jeff Bates, “The Boston Consulting

Group Hacker Survey,” January 31, 2002 (www.osdn.com/bcg/bcg/bcghacker
survey.html [August 2002]).

15. Evans, “Free Software,” p. 41.
16. See www.kde.org and www.gnome.org.
17. See Rex Baldazo, “CNET Review: Mozilla 1.0 Release Candidate 2,” May

14, 2002 (www.cnet.com/software/0-3227883-8-9895059-1.html?tag=st.sw.
3227883.bhed.3227883-8-9895059-1 [August 2002]), and Andrew Leonard,
“Mozilla’s Revenge,” Salon, March 12, 2002 (www.salon.com/tech/col/leon/2002/
03/12/mozilla/ [August 2002]).

18. On the other hand, there is a model that shows that open source has a

06 3393-3 notes.p65 11/12/2002, 6:52 AM90

NOTES TO PAGES 17–22 91

comparative advantage over the proprietary provision of complex applications.
See Bessen, “Open Source Software.” This model suggests that the technically
sophisticated nature of much open source software arises from an economic
decision, not a fundamental limitation in the open source development process.

19. www.sourceforge.net.
20. Wylie Wong, “Application Server Giants Regroup,” CNET, December 3,

2001 (www.news.com.com/2100-1001-276459.html?legacy=cnet&tag=
st.ne.ni.gartnercomm.ni [August 2002]).

21. Ibid.
22. See also Lerner and Tirole, “Simple Economics of Open Source.”
23. For example, David Coursey, “And Today, Microsoft Is Still Driving Me

Nuts (Part Two),” May 7, 2001 (www.zdnet.com/anchordesk/stories/story/
0,10738,2715734,00.html [August 2002]).

24. These issues are discussed in Michael A. Cusumano and Richard W. Selby,
Microsoft Secrets: How The World’s Most Powerful Software Company Creates Tech-
nology, Shapes Markets and Manages People (Simon and Schuster, 1995).

25. See Bessen, “Open Source Software”; and Cusumano and Selby, Microsoft
Secrets, especially p. 310.

26. Generally, asymmetric information describes a situation where one party
(or group of parties) has private information that another party (or parties)
does not have.

27. There is an additional factor limiting provision under custom propri-
etary development. In many cases custom development uses an application pro-
gram interface (API) provided by a standardized software firm. However,
monopoly pricing of this API implies a deadweight loss—some consumers will
be priced out of the market. See Bessen, “Open Source Software.”

28. Franke and von Hippel, “Satisfying Heterogeneous User Needs,” provide
some evidence for this.

29. Ibid. Security features represent only a fraction of Apache’s total feature
set, so presumably the total extent of customization is even greater.

30. “Apache Module Registry” (http://modules.apache.org/ [May 25, 2002,
with duplicates and bad records eliminated]).

31. “Apache Module Report” (https://secure1.securityspace.com/s_survey/
data/man.200204/apachemods.html [May 25, 2002]).

32. Mockus, Fielding, and Herbsleb, “A Case Study.”
33. Ibid., table 1.
34. Note that very little of the customization effort can be attributed to firms

attempting to economize by using a free product and then correcting deficien-
cies through customization. The second most popular web server, Microsoft’s
IIS, is free for users of the Windows operating system. Apache runs on Linux
(free), proprietary Unix, and also on Windows. If one assumes that these oper-
ating systems are equivalent for running web servers, then Apache offers no
direct cost saving relative to IIS. Even if Linux were inferior to Windows but
could be fixed through customization of Apache, the cost difference would be

06 3393-3 notes.p65 11/12/2002, 6:52 AM91

minor—the price of Windows is $300 or less per license. Thus few firms would
plausibly customize Apache to compensate for major deficiencies in Linux.

35. “IIS-Enabled Products from Industry Partners” (www.microsoft.com/
windows2000/partners/iis.asp [May 25, 2002]).

36. See Johnson, “Economics of Open Source.”
37. Of course, some proprietary products experience “network externalities”

and may also face similar chicken-and-egg problems.
38. See endnotes 12 through 14.
39. www.sourceforge.net.
40. “Linux Takes on MS in China,” BBC News, January 8, 2002 (http://news.

bbc.co.uk/hi/english/sci/tech/newsid_1749000/1749441.stm [August 2002]).
41. Rick Perera, “Open-source Fans Welcome French Government,”

ITWorld.com, November 26, 2001 (www.itworld.com/Man/2685/IDG011126
frenchopensource/ [August 2002]).

42. See http://niap.nist.gov/cc-scheme/historical-perspective.html [August 2002]).
43. Jonathan Krim, “Open-Source Fight Flares at Pentagon: Microsoft Lob-

bies Hard against Free Software,” Washington Post, May 23, 2002, p. E1.
44. Ken Brown argues that open source poses a security risk; see Opening the

Open Source Debate (Washington: Alexis de Tocqueville Institute, June 2002).
However, the computer security community has, if anything, a preference for
open source for secure systems. See Ross Anderson, “Security in Open versus
Closed Systems—The Dance of Boltzmann, Coase and Moore,” and Roger
Needham, “Security and Open Source,” both papers presented at the confer-
ence “Open Source Software: Economics, Law and Policy,” Institut de Economie
Industrielle (IDEI), Toulouse, France, June 20–21, 2002 (www.idei.asso.fr/
english/epresent/index.html [August 2002].)

45. The importance of this point has been raised recently by open source
advocates at www.sincerechoice.com.

46. Paul Krugman, Competitiveness: An International Reader (New York: For-
eign Affairs, 1994).

47. SourceForge lists numerous “me too” open source projects that are quite
similar to already existing programs. Not surprisingly, few of these receive sus-
tained support.

48. To obtain a patent, an invention is supposed to be nonobvious to a prac-
titioner skilled in the relevant art. See Robert P. Merges, Patent Law and Policy:
Cases and Materials, 2d ed. (Charlottesville, Va.: The Mitchie Company, 1997);
Samuel Kortum and Josh Lerner, “What Is behind the Recent Surge in Patent-
ing?” Research Policy, vol. 28, no. 1 (1999), pp. 1–22; Bronwyn H. Hall and
Rosemary Ham Ziedonis, “The Patent Paradox Revisited: An Empirical Study
of Patenting in the U.S. Semiconductor Industry, 1979–1995,” RAND Journal of
Economics, vol. 32, no. 1 (2001), pp. 101–28; Josh Lerner, “Patenting in the
Shadow of Competitors,” Journal of Law and Economics, vol. 38, no. 2 (1995),
pp. 463–95; Glynn S. Lunney Jr., “E-Obviousness,” Michigan Telecommunica-
tions and Technology Law Review, vol. 7 (Fall 2000–Spring 2001), p. 363.

92 NOTES TO PAGES 23–27

06 3393-3 notes.p65 11/12/2002, 6:52 AM92

49. “Hearings on Software Patent Protection,” U.S. Patent and Trademark
Office, January–February 1994.

50. Jean Lanjouw and Mark Schankerman, “Enforcing Intellectual Property
Rights,” Working Paper 8656 (Cambridge, Mass.: National Bureau of Economic
Research, December 2001).

51. Wesley M. Cohen, Richard R. Nelson, and John P. Walsh, “Protecting
Their Intellectual Assets: Appropriability Conditions and Why U.S. Manufac-
turing Firms Patent (or Not),” Working Paper 7552 (Cambridge, Mass.: Na-
tional Bureau of Economic Research, February 2000).

52. Only 51 percent of corporate patent portfolios were used according to
Edwin Mansfield, The Economics of Technological Change (W. W. Norton, 1968),
p. 207. Rossman and Sanders reported that only 31 percent were in use at the
time of their survey, although about half were used at some time; see Joseph
Rossman, and Barkev Sanders, “The Patent Utilization Study,” Patent, Trade-
Mark, and Copyright Journal of Research and Education, vol. 1, no. 1 (1957), pp.
74–111. And a 1998 study found that about 60 percent were used; see “Intellec-
tual Property Rights Benchmark Study” (London: Business Planning and Re-
search International, 1998), cited in “The Patent and License Exchange: Enabling
a Global IP Marketplace,” Harvard Business School Case Study N9-601-019
(July 17, 2000).

53. Peter C. Grindley and David J. Teece, “Managing Intellectual Capital:
Licensing and Cross-Licensing in Semiconductors and Electronics,” California
Management Review, vol. 39, no. 2 (1997), pp. 8–41; Hall and Ziedonis, “Patent
Paradox Revisited,” pp. 101–28.

54. See, for example, Bruce Perens, “Preparing for the Intellectual-Property
Offensive,” LinuxWorld (www.linuxworld.com/linuxworld/lw-1998-11/lw-11-
thesource.html [August 2002]); Karston M. Self, “Cooperative OSS Patent Pool—
Proposal” (http://home.netcom.com/~kmself.osspatpool/index.html [August
2002]).

55. Quoted in Fred Warshofsky, The Patent Wars (Wiley, 1994), p. 170.
56. “IBM Public License Version 1.0” (http://oss.software.ibm.com/

developerworks/opensource/license10.html [August 2002]).
57. See www.openpatents.org (August 2002).
58. There have been some notable examples, including a leading developer

of free 3D software, Helmut Dersch. See Craig Bicknell, “Virtual Reality,
Real Trouble,” Wired News, July 20, 1999 (www.wired.com/news/ipo/
0,1350,20824,00.html [August 2002]).

59. For information on patents, see www.uspto.gov/main/patents.htm (Au-
gust 2002).

60. This declaration appears on a sign in the lobby of the U.S. Patent and
Trademark Office. See also USPTO, “FY2001 Corporate Plan,” 2000 (www.uspto.
gov/web/offices/com/corpplan [August 2002]), which states, “The Patent Busi-
ness is one of the PTO’s three core businesses. The primary mission of the Patent
Business is to help customers get patents.” Brian Kahin provides a political

NOTES TO PAGES 28–30 93

06 3393-3 notes.p65 11/12/2002, 6:52 AM93

economic analysis of the USPTO in “The Expansion of the Patent System: Poli-
tics and Political Economy,” First Monday, vol. 6, no. 1 (2001).

61. Cecil D. Quillen Jr. and Ogden H. Webster, “Continuing Patent Applica-
tions and Performance of the U.S. Patent Office,” Federal Circuit Bar Journal,
vol. 11, no. 1 (2001), pp. 1–21; Stuart Graham and others, “Post-Issue Patent
‘Quality Control’: A Comparative Study of US Patent Re-examinations and Eu-
ropean Patent Oppositions,” Working Paper 8807 (Cambridge, Mass.: National
Bureau of Economic Research, February 2002).

62. See Adam B. Jaffe, “The U.S. Patent System in Transition: Policy Innovation
and the Innovation Process,” Research Policy, vol. 29, no. 4–5 (2000), pp. 531–57.

63. Lunney, “E-Obviousness.”
64. Ibid. These figures are obtained by multiplying Lunney’s data for figure 1

(Percentage of Patents Held Invalid Where Validity at Issue and Decided) by the
data in figure 2 (Percentage of Invalid Patents Found Invalid for Obviousness).

65. U.S. Patent and Trademark Office, “Our Business: An Introduction to
the PTO” (www.uspto.gov/web/menu/intro.html [August 2002]).

66. James Bessen and Eric S. Maskin, “Sequential Innovation, Patents and
Imitation,” Department of Economics Working Paper 00-01 (Massachusetts In-
stitute of Technology, January 2000).

67. Grindley and Teece, “Managing Intellectual Capital.”
68. This idea has been proposed by Jean-Paul Smets, “Stimulating Competi-

tion and Innovation in the Information Society” (www.pro-innovation.org/
rapport_brevet/brevets_plan-en.pdf [August 2002]). Another approach is to make
patent renewals much more expensive so that only truly important innovations
would have long patent terms. See Francesca Cornelli and Mark Schankerman,
“Patent Renewals and R&D Incentives,” RAND Journal of Economics, vol. 30,
no. 2 (1999), pp. 197–214. This, however, would work against open source
developers.

69. Randall Davis and others, “A Manifesto Concerning the Legal Protection
of Computer Programs,” Columbia Law Review, vol. 94 (December 1994), p.
2318. The current term for patents is twenty years, while software is typically
amortized over thirty months.

70. Currently, patent fees are lower for individuals. However, something more
far-reaching is required to provide equal access since search costs and legal fees
are typically expensive.

Chapter 3
Politics and Programming:

Government Preferences for Promoting
Open Source Software

1. For further details concerning governments that have or are considering
policies to promote open source software, see David S. Evans and Bernard Reddy,

94 NOTES TO PAGES 30–34

06 3393-3 notes.p65 11/12/2002, 6:52 AM94

